Trophic structure of fish assemblages in two offshore islands (Ulleungdo and Dokdo) of Korea revealed using stable isotope analysis

Author:

Park Tae Hee,Lee Dong-Young,Kang Hee Yoon,Park Joo Myun,Kim Dongyoung,Park Hyun Je

Abstract

The objective of this study was to characterize the trophic structure of fish assemblages on the coasts of offshore islands and the eastern mainland of the Korean Peninsula. We compared the seasonal variability in the trophic structure of fish assemblages between the coasts of two island sites (Ulleungdo and Dokdo) and one mainland site (Hupo), which are on a similar latitude. We analyzed the stable carbon and nitrogen isotope ratios (δ13C and δ15N) of fish assemblages during spring (April) and summer (August) 2021. No temporal differences in the isotope values of fish and basal resources (i.e., suspended particulate organic matter (SPOM)) were found over the sampling period at the Hupo site. In contrast, at the Ulleungdo and Dokdo sites, the fishes and SPOM showed seasonal differences in the δ13C and δ15N values between the two seasons. In particular, the fish δ15N values at the island sites were relatively higher in summer compared to those in spring, suggesting the seasonal variation in the food chains and/or trophic status between consumers and their dietary sources. These regional isotopic variations also result in differences in the seasonal tendencies of the isotopic niche parameters of fish assemblages between the mainland and island coasts. Such differences in the seasonal isotopic patterns of fish assemblages suggest a relatively substantial shift in the dietary resources available to fish consumers on island coasts compared to those on the mainland coast. Overall, our results suggest that fish assemblages in offshore island coasts have distinct seasonal variability in trophic characteristics in response to changing environmental conditions, including basal resources, compared with fish food webs on the mainland coast at similar latitudes.

Funder

Ministry of Oceans and Fisheries

National Research Foundation of Korea

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3