Investigating the spatio–temporal characteristics of lower atmospheric ducts across the China seas by performing a long–term simulation using the WRF model

Author:

Liu Qi,Zhao Xiaofeng,Zou Jing,Hu Tong,Qiu Zhijin,Wang Bo,Li Zhiqian,Cui Chaoran,Cao Rui

Abstract

In this work, a diagnostic scheme for lower atmospheric ducts was established based on the Weather Research and Forecasting (WRF) model. More specifically, a 10-year simulation test was conducted for the China seas to investigate the spatio-temporal characteristics of the lower atmospheric ducts phenomenon. Compared with the sounding data, the long-term simulations showed a high temporal correlation and the root mean square error of the modified atmospheric refractivity remained between 4 M and 7 M. Based on the simulations, significant regional differences in the occurrence probability of lower atmospheric ducts were detected from south to north. Among them, the surface ducts near the sea surface exhibited the highest occurrence probability, with higher probabilities being recorded in autumn and winter, and the probability gradually increased with the decreasing latitude. The spatio-temporal characteristics of duct height, thickness, and strength were generally consistent. In the seas at mid-latitudes, strong ducts mostly occurred in the spring and autumn, with the single-layer ducts being predominant and the first layer duct showing stronger characteristics than the second layer. In the lower latitude regions, the situation was exactly the opposite. The first duct layer, which existed throughout the year, exhibited weaker characteristics with less pronounced seasonal variations. On the other hand, the second duct layer demonstrated stronger features.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3