Top-Down and Bottom-Up Control in the Galápagos Upwelling System

Author:

Brandt Margarita,Silva-Romero Isabel,Fernández-Garnica David,Agudo-Adriani Esteban,Bove Colleen B.,Bruno John F.

Abstract

Increased standing macroalgal biomass in upwelling zones is generally assumed to be the result of higher nutrient flux due to upwelled waters. However, other factors can strongly impact macroalgal communities. For example, herbivory and temperature, via their effects on primary producers and the metabolic demands of consumers, can also influence macroalgal biomass and productivity, respectively. We assessed the effects of nutrient availability, temperature, and herbivory on macroalgal biomass on a subtidal nearshore rocky reef in the Galápagos Islands. We manipulated nutrient availability and herbivory in field experiments performed in two seasons: the first during a cool, upwelling season, and the second during a warm, non-upwelling season. Excluding macro-herbivores had a clear effect on standing macroalgal biomass, independent of season or nutrient availability. However, we found different interactive effects of nutrients and macro-herbivores between the two seasons. During the cool season, macroalgal biomass was significantly higher in herbivore exclusions than in open areas under ambient nutrient conditions. However, when nutrients were added, macroalgal biomass was not significantly different across all herbivore treatments, which suggests reduced top-down control of herbivores (hence a greater standing algal biomass) in open areas. In the warm season, macroalgal biomass was significantly higher in herbivore exclusions compared to open treatments, both with and without nutrient addition. Furthermore, biomass reached 11X in herbivore exclusions with nutrient additions, which hints nutrient limitation only during warm, low-upwelling conditions. Overall, our results support the hypothesis that macro-herbivores reduce macroalgal biomass in this system and suggest that nutrient availability, but not temperature, modulate herbivory.

Funder

National Science Foundation

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference41 articles.

1. . Generalized Linear Mixed-Effects Modeling in R AndersonS. 2022

2. Elevated Nutrient Content of Tropical Macroalgae Increases Rates of Herbivory in Coral, Seagrass, and Mangrove Habitats;Boyer;Coral Reefs,2004

3. Erizos De Mar;Brandt,2002

4. Influence of a Dominant Consumer Species Reverses at Increased Diversity;Brandt;Ecology,2012

5. Geographic Variation of Southeastern Pacific Intertidal Communities;Broitman;Marine Ecol. Prog. Ser.,2001

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3