Underwater ice adaptive mapping and reconstruction using autonomous underwater vehicles

Author:

Fan Shuangshuang,Zhang Xinyu,Zeng Guangxian,Cheng Xiao

Abstract

The undersides of floating ice shelves and sea ice in the Antarctic and Arctic are among the least accessible environments on Earth. The interactions between ice shelves, sea ice, and the ocean are of considerable scientific interest. In order to fully understand the complex picture of sea ice, and not just its surface, it is quite necessary to map the underside to comprehend the full context of its growth and decay patterns. Autonomous Underwater Vehicles (AUVs) are rapidly becoming the desired platform of choice for mapping the underside of sea ice to provide high-resolution 3D views of sea ice topography. To increase the efficiency and accuracy of AUV sampling behaviors is significant for the under-ice observation mission given its limited endurance. In this paper, we present a low-cost underwater ice mapping framework for small-sized AUVs using adaptive sampling and map reconstruction methods. A small-sized AUV is cost-effective and convenient for operation in polar regions; however, due to its limited loading capacity and energy, it is more applicable for the vehicle to carry single-beam sonar for ice bottom mapping but not multi-beam. Thus, the essential issue in this application is how to obtain the key information of ice topography and how to reconstruct the map of ice draft (namely underwater ice thickness) with AUV sparse mapping swathes. To address this, we propose a graphics-based adaptive mapping method to densify the measuring of ice bottom surface with ‘noticeable’ variations; moreover, we also present a sparse approximation method for ice draft map reconstruction using the sparse mapping swathes from a single-beam sonar. Our efforts are to introduce an effective and efficient approach for underwater ice mapping using low-cost small-sized AUVs. Our proposed adaptive mapping and reconstruction methods are validated in the under-ice scenario created using the field data.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Low-Cost and High-Precision Underwater Integrated Navigation System;Journal of Marine Science and Engineering;2024-01-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3