Body Composition of Common Bottlenose Dolphins in Sarasota Bay, Florida

Author:

Adamczak Stephanie K.,Holser Rachel R.,Costa Daniel P.,Berens McCabe Elizabeth J.,Wells Randall S.

Abstract

Marine mammal body composition has been an important tool that is used as a proxy for the health and condition of individuals within a population. Common bottlenose dolphin (Tursiops truncatus) body composition is influenced by variations in blubber thickness resulting from changes in temperature, prey availability, health, and life-history traits. We examined how environmental, ontogenetic, and reproductive variables influenced the body composition of common bottlenose dolphins in Sarasota Bay using data collected from a long-term monitoring project by the Sarasota Dolphin Research Program (SDRP). We found that both sea surface temperature (SST) and catch per unit effort (CPUE), used as a proxy for prey availability, influenced body composition. There was a high degree of seasonality in body composition, with higher values occurring in winter when SST and CPUE were both low. Ontogeny also greatly influenced body composition, as younger dolphins typically had thicker blubber than mature individuals. Interestingly, young females allocated more energy to allometric growth than deposition of blubber for body composition when compared to young males. However, as females matured and their growth slowed, they invested more in body composition. We found no significant difference in body composition of females of varying reproductive states, providing further evidence of their status as true income breeders. Our work highlights that changes in body composition result from fluctuations in environmental variables and that energy allocation to body composition changes with ontogeny.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3