Effect of wind on summer chlorophyll-a variability in the Yellow Sea

Author:

Lin Lei,Liu Dongyan,Wang Yueqi,Lv Ting,Zhao Yue,Tan Wei

Abstract

Winds potentially affect primary production in shelf seas during the stratified season by enhancing upwelling and mixing. However, the exact extent and modalities of this effect in the Yellow Sea remain unclear. Here, based on the satellite and in situ observation data, statistical method, and wind-driven upwelling theory, we examined the wind effect on the chlorophyll-a (Chl-a) variability in the summer of 2002-2020 and the effect mechanism. The satellite data revealed a significantly positive correlation between anomalies of the monthly mean of the summer sea surface Chl-a and wind speed at the continental slope region (water depth of 20-60 m) in the southwestern Yellow Sea where strong wind-driven upwelling has been indicated by previous studies. The wind-driven upwelling along the continental slope was further verified using two summer in-situ observations. After a fortnight of southeasterly wind, the upwelling patterns of high salinity and rich nutrients from the Yellow Sea cold water mass were observed, and consequently, high Chl-a concentrations occurred in the upper layer of the slope region. The wind-driven upwelling occurred in the region at water depth of ~20-60 m, which is consistent with the result of the wind-driven coastal upwelling theory (0.5D < water depth < 1.25D, where D is the thickness of the Ekman layer). The dissolved inorganic nitrogen, phosphorus, and silicate fluxes contributed by wind-driven upwelling were estimated as 1345 ± 674 μmol/m2/d, 81 ± 45 μmol/m2/d and 1460 ± 899 μmol/m2/d, respectively, accounting for 30%-40% of total nutrient supply, and were several times larger than that contributed by the turbulent mixing, which can explain why the strong wind-Chl-a correlation only occurred at the upwelling region rather than the entire sea. In addition, in this region, the interannual variability of the summer mean Chl-a was negatively correlated to both the Pacific Decadal Oscillation (PDO) and El Niño-Southern Oscillation (ENSO) indexes, due to the opposite phase of the summer wind anomaly and the PDO/ENSO. This study revealed the wind effect on the shelf phytoplankton is regional and highlighted that wind could be a pivotal factor driving the climate variability of shelf primary production in the stratified season.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3