Erosion and accretion of salt marsh in extremely shallow water stages

Author:

Chen Dezhi,Tang Jieping,Xing Fei,Cheng Jun,Li Mingliang,Zhang Yiyi,Shi Benwei,Shi Lianqiang,Wang Ya Ping

Abstract

Salt marshes, which commonly exist on the upper tidal flat, provide a natural barrier against sea level rise and coastal storm. The extremely shallow water stages (water depth< 0.2 m), including the initial stage of flood tides and the last stage of ebb tides, can induce a significant impact on sediment dynamics of saltmarshes and associated tidal flats, despite lasting for only a short time (around 10 min), which has been less studied. In this study, two parallel field sites were established to quantify erosion-accretion processes and morphological changes during extremely shallow water stages in salt marshes within Doulonggang tidal flat along the Jiangsu coast. Our results revealed that obvious accretion occurred during extremely shallow water stages, with a total deposition amount of +33.8 mm in vegetated areas and +20.8 mm in unvegetated areas. In contrast, erosion dominated during deep water stages, with a total erosion amount of -22.3 mm at the vegetated site and -32.7 mm at the unvegetated site. The magnitude of bed-level change during extremely shallow water stages was 7~8 times greater than that during deep water stages, even though the duration of extremely shallow water stages was only about 14~15% of the entire tidal cycle. Furthermore, strong winds significantly impacted deposition during extremely shallow water stages compared to calm weather. During the strong wind period, the average bed level change rate reached +0.15 mm/min and +0.12 mm/min in the vegetated and unvegetated areas, respectively. This is significantly higher than the +0.05 mm/min and +0.01 mm/min during the calm weather period. These results reveal that extremely shallow water stages have substantial impacts on sedimentary processes, which are vital for the maintenance of tidal flat systems.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3