Author:
Carter Mauricio J.,García-Huidobro M. Roberto,Aldana Marcela,Rezende Enrico L.,Bozinovic Francisco,Galbán-Malagón Cristóbal,Pulgar José M.
Abstract
Antarctic marine animals face one of the most extreme thermal environments, characterized by a stable and narrow range of low seawater temperatures. At the same time, the Antarctic marine ecosystems are threatened by accelerated global warming. Determining the upper thermal limits (CTmax) is crucial to project the persistence and distribution areas of the Antarctic marine species. Using thermal death time curves (TDT), we estimated CTmax at different temporal scales from 1 minute to daily and seasonal, the predict vulnerability to the current thermal variation and two potential heatwave scenarios. Our results revealed that CTmax at 1 min are far from the temperature present in the marine intertidal area where our study species, showing Echinoderm species higher CTmax than the Chordata and Arthropods species. Simulations indicated that seasonal thermal variation from the intertidal zone contributed to basal mortality, which increased after considering moderate scenarios of heatwaves (+2°C) in the Shetland Archipelago intertidal zone. Our finding highlighted the relevance of including exposure time explicitly on the CTmax estimates, which deliver closer and more realistic parameters according to the species that may be experiencing in the field.
Funder
Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica
Institut chilien de l'Antarctique
Agencia Nacional de Investigación y Desarrollo
Subject
Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献