Controlling Light to Optimize Growth and Added Value of the Green Macroalga Codium tomentosum

Author:

Marques Rúben,Moreira Anthony,Cruz Sónia,Calado Ricardo,Cartaxana Paulo

Abstract

Codium tomentosum is a recently domesticated green macroalga, being currently cultured as an extractive species in integrated multi-trophic aquaculture (IMTA). Optimization of light requirements in outdoor systems must be achieved to increase the market value of cultivated algal biomass. The present study addresses the seasonal effects of light intensity and wavelength on productivity, pigment composition and epiphyte overgrowth in C. tomentosum cultured in a land-based IMTA system. Exposure to high light (non-filtered sun light) lead to higher net productivities in spring. However, non-filtered sun light caused significantly reduced productivities during summer when compared to filtered sun light (~ 4x lower irradiance levels). Furthermore, lower photosynthetic capacity (Fv/Fm) was observed in macroalgae cultured under high light during summer, indicating photoinhibition. Treatments with filtered sun light (low and red light) showed intermediate and more stable productivities. Epiphyte biomass was higher under high light and the lowest epiphyte overgrowth was recorded under red light. Concentrations of light-harvesting pigments were lower in summer than in spring, indicating a seasonal photoacclimation of macroalgae. An opposite seasonal trend was observed for accessory xanthophylls, as the main role of these pigments is photoprotection. Higher all-trans-neoxanthin and violaxanthin concentrations were found in high light than in low or red light treatments, confirming the important role of these biomolecules in the photoprotection of C. tomentosum. This study underlines the importance of controlling light to optimize algal growth outdoors and enhance the production of high-value compounds (i.e., pigments). Additionally, this practice can also reduce epiphyte overgrowth, thus enhancing the valorization of macroalgal biomass derived from C. tomentosum aquaculture.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3