Effects of LED spectrum on circadian rhythmic expression of clock genes and Aanat2 in the brain of juvenile European seabass (Dicentrarchus labrax)

Author:

Ma He,Liu Songtao,Wei Pingping,Fei Fan,Ren Jilong,Dai Mingyun,Ma Zhen,Liu Ying

Abstract

The circadian rhythm is a physiological phenomenon that occurs in various organisms with a cycle of about 24 hours. Light is one of the important environmental factors affecting biological rhythm. To clarify whether a shift in light spectrum can influence the circadian expression in fish brain, a total of 175 European seabasses [body weight: 32.5 ± 0.71) g; body length: (13.78 ± 0.35) cm] were exposed to white light (WL), red light (RL), yellow light (YL), green light (GL) or blue light (BL). After 50 days of exposure, circadian expressions of four core clock genes (Clock, Bmal1, Per2, Cry1) and Aanat2 gene in brain were examined. The results showed that the temporal expression patterns of positive clock gens (Clock and Bmal1) showed increases during the scotophase and decreases during the photophase, with peaks near the middle of the darkness. Clock gene expression showed a stable circadian rhythm (R2 = 0.578-0.824, P=0.000- 0.027) in all light groups while Bmal1 showed circadian rhythm in WL, GL and RL, not in BL and YL. Daily expression patterns of the negative clock genes oscillated in the opposite phase from the positive clock genes, showing increasing mRNA levels during the light, decreases during the dark, and peaks near the shift from night to day, except Per2 in RL and Cry1 in BL. Compared with WL, the acrophases of Clock and Bmal1 were delayed under all light treatments (BL: + 3.7h, +6.73h; RL: +2.4h,+1.35h; YL: + 4.94h, 2.00h; GL: +0.05, +0.16h). Cry1 showed advanced acrophase under all light treatments (BL: -10.74 h, GL: -3.81 h, RL: -3.93 h, YL: -7.56 h) but Per2 showed delayed acrophase in all light treatments (GL: +0.86 h, RL: +10.35 h, YL: +9.62 h), except in BL (-0.43 h). The acrophase of Aanat2 was advanced by all monochromatic light, the Aanat2 level was significantly increased in RL compared with other light treatment. Therefore, the results indicate that RL may regulate the expression of Aanat2 gene by affecting the expression of clock gene in fish brain. Spectrum can affect the biological clock system of fish, and unreasonable spectrum may disturb the rhythm of gene expression of biological clock of fish. Under the irradiation of light spectrum, some clock genes still maintain obvious circadian oscillation, while the rhythm of some clock genes is not obvious and may be destroyed. Our findings suggest a primary role of light spectrum information to the fish brain circadian system.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3