Effect of environmental and anthropogenic factors on the distribution and co-occurrence of cold-water corals

Author:

Palummo Valeria,Milisenda Giacomo,Canese Simonepietro,Salvati Eva,Pica Daniela,Passarelli Augusto,Spanò Nunziacarla,Romeo Teresa,Greco Silvestro

Abstract

Cold-water corals (CWCs) are bioengineering species that can increase habitat heterogeneity and improve the deep sea’s biological diversity and ecosystem functioning. Knowledge of their distribution provides a critical baseline for assessing the effect of natural and anthropogenic impacts on these important deep-sea habitats. The aims of this study are: i) provide new data on the spatial distribution of six CWCs species in the Strait of Sicily, ii) describe the principal environmental and anthropogenic variables that play a role in shaping their distribution, iii) identify hotspots in which individuals belonging to the various species co-occur. Presence-only data of six CWCs species, ten environmental variables (depth, slope, rugosity, aspect, flowdir, temperature, salinity, north bottom current, east bottom current, chlorophyll-a), and one variable relating to bottom trawling effort (Automatic Information System – AIS) were used to predict the suitable habitats. We used Maximum Entropy modelling (MaxEnt) approach and used the AUC (area under the receiver operating characteristic curve) and TSS (true skill statistics) to evaluate the model performance. The results showed excellent AUC, TSS and AUC’s standard deviation mean values for all six species. The validation show high predictive performance. MaxEnt identified slope, depth, and rugosity as the most important predictors, showing the highest percentage contribution for all six species considered. Throughout the study area, highlyinterspecific persistent density hotspot of CWCs co-occurrence were discovered, with a total extension of 4.05 km2 where all species co-occur. Although studies on the effect of environmental and anthropogenic factors that impact the distribution of these species of conservation interest remain scarce, the results of this study offer useful guidance for decision-makers to develop necessary conservation measures.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3