Temperature-Dependent Reproductive Success of Stickleback Lateral Plate Morphs: Implications for Population Polymorphism and Range Shifts Under Ocean Warming

Author:

Wanzenböck Sylvia,Fuxjäger Lukas,Ringler Eva,Ahnelt Harald,Shama Lisa N. S.

Abstract

Changing environments associated with rapid climate change can shape direct measures of fitness such as reproductive success by altering mating behavior, fecundity and offspring development. Using a polymorphic oceanic population of threespine stickleback (Gasterosteus aculeatus), we investigated whether a 4°C increase in sea surface temperature influenced clutch siring success, reproductive output, and offspring growth among lateral plate morphs. Since low plated morphs are thought to have a selective advantage in warmer environments, we predicted that low plated males should have higher clutch siring success in +4°C environments, and that thermal plasticity of traits (e.g., egg size, offspring growth) should reflect different trait optima in different environments among plate morphs. Parentage analysis of egg clutches revealed temperature-specific clutch siring success, in that low plated males sired more clutches in +4°C environments and completely plated males sired more clutches at ambient (seasonal) temperature. Both completely and low plated females laid larger eggs when acclimated to +4°C, but only completely plated females had smaller clutches at +4°C. Offspring of low and partially plated females grew much less at +4°C compared to those of completely plated females. Taken together, our results demonstrate that ocean warming could impact reproductive success at various levels, with differential effects depending on phenotype, in this case, lateral plate morph. Some traits (clutch siring success, egg size) showed better performance for low plated fish at +4°C, whereas others (e.g., growth) did not. Higher clutch siring success of low plated males at elevated temperature might indicate a future shift in plate morph composition for polymorphic stickleback populations, with potential implications for colonization ability during range shifts under climate change.

Funder

Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3