A Novel Approach to Using Seabed Geomorphology as a Predictor of Habitat Use in Highly Mobile Marine Predators: Implications for Ecology and Conservation

Author:

Wyles Hannah M. E.,Boehme Lars,Russell Debbie J. F.,Carter Matt I. D.

Abstract

Understanding how marine predators find patchily distributed prey resources in a dynamic environment is key to identifying important ecological areas for ecosystem-level conservation management. However, the mechanisms underpinning important foraging areas often result from complex interactions between static and dynamic covariates (e.g. topography and currents). Modelling habitat associations with hydrodynamic processes is rarely useful when attempting to identify and characterise foraging areas across an individual’s foraging range. Investigating the influence of static habitat features on predator behaviour can provide a more tractable baseline understanding of habitat associations, upon which additional complexity can be added. Seabed gradient covariates (e.g. slope and aspect) are often used, yet such metrics are computed at singular user-defined resolutions, and provide limited ecological insight when used in isolation. Instead, categorising the seabed into geomorphological features may provide better characterisation of seabed structure. Here we explore the utility of a pattern recognition algorithm to delineate whole geomorphological features (“geomorphons”) on the seabed (e.g. valleys, ridges, footslopes) from bathymetry data, and examine the influence of geomorphology on marine predator habitat use. We demonstrate the potential application of this approach in a case study, examining the influence of geomorphons on the at-sea behaviour of a highly mobile predator inhabiting shelf seas: the grey seal (Halichoerus grypus). We analyse GPS tracking data from three seals tagged in the southern North Sea, an area with heterogeneous geomorphology. We use hidden Markov models (HMMs) to infer foraging and travelling behaviour and model the effect of different feature types on the probability of switching between states. All three seals showed an increased probability of transitioning from travelling to foraging when encountering slopes, footslopes and hollows, and foraging activity was concentrated at slopes on the fringes of the Dogger Bank. We hypothesise that such features may host prey aggregations, and/or lead to increased prey capture success. The results suggest the importance of such areas for grey seals in the southern North Sea, a region undergoing rapid and widespread anthropogenic habitat change. This method could be incorporated into future species distribution models to improve estimates of predator distribution, informing conservation management and marine spatial planning.

Funder

Department for Business, Energy and Industrial Strategy, UK Government

Natural Environment Research Council

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3