Assessing the ability of deep learning techniques to perform real-time identification of shark species in live streaming video from drones

Author:

Purcell Cormac R.,Walsh Andrew J.,Colefax Andrew P.,Butcher Paul

Abstract

Over the last five years remotely piloted drones have become the tool of choice to spot potentially dangerous sharks in New South Wales, Australia. They have proven to be a more effective, accessible and cheaper solution compared to crewed aircraft. However, the ability to reliably detect and identify marine fauna is closely tied to pilot skill, experience and level of fatigue. Modern computer vision technology offers the possibility of improving detection reliability and even automating the surveillance process in the future. In this work we investigate the ability of commodity deep learning algorithms to detect marine objects in video footage from drones, with a focus on distinguishing between shark species. This study was enabled by the large archive of video footage gathered during the NSW Department of Primary Industries Drone Trials since 2016. We used this data to train two neural networks, based on the ResNet-50 and MobileNet V1 architectures, to detect and identify ten classes of marine object in 1080p resolution video footage. Both networks are capable of reliably detecting dangerous sharks: 80% accuracy for RetinaNet-50 and 78% for MobileNet V1 when tested on a challenging external dataset, which compares well to human observers. The object detection models correctly detect and localise most objects, produce few false-positive detections and can successfully distinguish between species of marine fauna in good conditions. We find that shallower network architectures, like MobileNet V1, tend to perform slightly worse on smaller objects, so care is needed when selecting a network to match deployment needs. We show that inherent biases in the training set have the largest effect on reliability. Some of these biases can be mitigated by pre-processing the data prior to training, however, this requires a large store of high resolution images that supports augmentation. A key finding is that models need to be carefully tuned for new locations and water conditions. Finally, we built an Android mobile application to run inference on real-time streaming video and demonstrated a working prototype during fields trials run in partnership with Surf Life Saving NSW.

Funder

Department of Primary Industries

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3