Main drivers of marine heat waves in the eastern South Pacific

Author:

Carrasco David,Pizarro Oscar,Jacques-Coper Martín,Narváez Diego A.

Abstract

During the last decades, marine heat waves (MHWs) have increased in frequency and duration, with important impacts on marine ecosystems. This trend has been related to rising global sea surface temperatures, which are expected to continue in the future. Here, we analyze the main characteristics and possible drivers of MHWs in the eastern South Pacific off Chile. Our results show that MHWs usually exhibit spatial extensions on the order of 103-104 km2, temperature anomalies in the mixing layer between 1 and 1.3°C, and durations of 10 to 40 days, with exceptional events lasting several months. In this region, MHW are closely related to the ENSO cycles, in such a way that El Niño and, to a lesser extent, La Niña events increase the probability of high intensity and extreme duration MHWs. To analyze the MHW drivers, we use the global ocean reanalysis GLORYS2 to perform a heat budget in the surface mixed layer. We find that most events are dominated by diminished heat loss –associated with reduced evaporation– and enhanced insolation; thus, this group is called ASHF (for air-sea heat fluxes). The second type of MHWs is driven by heat advection, predominantly forced by anomalous eastward surface currents superimposed on a mean westward temperature gradient. The third type of MHWs results from a combination of positive (seaward) anomalies of air-sea heat fluxes and heat advection; this group exhibits the greatest values of spatial extension, intensity, and duration.

Funder

Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica

Agencia Nacional de Investigación y Desarrollo

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3