Microplastics in the Mediterranean: Variability From Observations and Model Analysis

Author:

Tsiaras Kostas,Costa Elisa,Morgana Silvia,Gambardella Chiara,Piazza Veronica,Faimali Marco,Minetti Roberta,Zeri Christina,Thyssen Melilotus,Ben Ismail Sana,Hatzonikolakis Yannis,Kalaroni Sofia,Garaventa Francesca

Abstract

In this study, the abundance and properties (size, shape, and polymer type) of microplastics (MPs) in sea surface water samples, collected during two sampling campaigns over 2018–2019, in four coastal areas of the Mediterranean Sea (Saronikos Gulf, LIgurian Sea, Gulf of Lion, and Gabes Gulf) were investigated. Coupled hydrodynamic/particle drift model simulations with basin-scale Mediterranean and high resolution nested models were used to provide a better understanding on the variability of the abundance/size of MPs, originating from wastewater and river runoff, in the four areas. Different size classes of MPs were considered in the model, taking into account biofouling induced sinking, as a possible mechanism of MPs removal from the surface. The Gabes Gulf showed the highest mean MPs abundance (0.073–0.310 items/m2), followed by Ligurian Sea (0.061–0.134 items/m2), Saronikos Gulf (0.047–0.080 items/m2), and Gulf of Lion (0.029–0.032 items/m2). Overall, the observed MPs abundance and size distribution was reasonably well reproduced by the model in the four different areas, except an overestimation of small size contribution in Saronikos Gulf. The basin-scale simulation revealed a strong decrease of smaller size MPs in offshore areas, due to biofouling induced sinking, with larger (floating) MPs being able to travel longer distances in the open sea. A significant impact of waves drift and advection of MPs from non-local sources was identified from model simulations, particularly in the Gulfs of Lion and Gabes, having a stronger effect on larger microplastics. In Gabes Gulf, most MPs originated from offshore areas, being mainly (floating) larger size classes, as suggested by the observed quite small contribution of <1 mm particles. The MPs observed abundance distribution in each area could be partly explained by the adopted sources distribution. The modeling tools proposed in this study provide useful insight to gain a better understanding on MPs dynamics in the marine environment and assess the current status of plastic pollution on basin and regional scale to further develop environmental management action for the mitigation of plastic pollution in the Mediterranean Sea.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference121 articles.

1. Distribution Patterns of Floating Microplastics in Open and Coastal Waters of the Eastern Mediterranean Sea (Ionian, Aegean, and Levantine Seas).;Adamopoulou;Front. Mar. Sci.,2021

2. Impact of Plastic Pollution on Marine Life in the Mediterranean Sea;Anastasopoulou;Plastics in the Aquatic Environment - Part I. The Handbook of Environmental Chemistry,2019

3. Distribution and characterization of microplastic particles and textile microfibers in Adriatic food webs: General insights for biomonitoring strategies.;Avio;Environ. Pollut.,2020

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3