A dissolved oxygen prediction model based on GRU–N-Beats

Author:

Hao Zhenhui

Abstract

Dissolved oxygen is one of the most important water quality parameters in aquaculture, and the level determines whether fish can grow healthily. Since there is a delay in equipment control in the aquaculture environment, dissolved oxygen prediction is needed to reduce the loss due to low dissolved oxygen. To solve the problem of insufficient accuracy and poor interpretability of traditional methods in predicting dissolved oxygen from multivariate water quality parameters, this paper proposes an improved N-Beats-based prediction network. First, the maximum expectation algorithm [expectation–maximization (EM)] was used to fill in the original data by fitting the missing values. Second, the discrete wavelet transform (DWT) was used to reduce the overall noise of the sample, then the gated recurrent unit (GRU) feature extraction network was employed to extract the water quality information from the temporal dimension, the N-Beats was utilized to predict the preprocessed data, and the residual operation through Stack was performed to obtain the prediction results. The improved algorithm overcomes the challenge of insufficient prediction accuracy of the traditional algorithm. The GRU–N-Beats network proposed in this paper can extract features from multivariate time dimensions for prediction. The values of root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and R2 for the proposed algorithm were 0.171, 0.120, 0.015, and 0.97, respectively. In particular, they were 28.5%, 32.1%, 51.6%, 24.3%, 14.9%, 36.4%, and 19.3% higher than those of long short-term memory (LSTM), GRU, temporal convolutional network (TCN), LSTM–TCN, PatchTST, back-propagation neural network (BPNN), and N-Beats on RMSE, respectively.

Publisher

Frontiers Media SA

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3