Isotope constraints on nitrogen dynamics in the upper water column of the South China Sea

Author:

Yan Xiuli,Yang Jin-Yu Terence,Xu Min Nina,Tan Ehui,Zheng Zhenzhen,Zou Wenbin,Dai Minhan,Kao Shuh-Ji

Abstract

The supply of nitrogen (N) from various external and internal sources into the euphotic zone, e.g., atmospheric N deposition (AND), upwelling, lateral intrusion, and remineralization, modulates the biogeochemical and climatic roles of oligotrophic oceans and complicates N dynamics in the upper water column (≤200 m). However, our ability to resolve the mechanisms controlling upper-ocean N cycling is limited by the lack of high-resolution vertical observations. Here, we analyzed concentrations and dual isotopes of nitrate (NO3) in the upper 200 m of the oligotrophic South China Sea. By examining dual isotopic signatures of NO315NNO3 and δ18ONO3) and multiple associated parameters vertically throughout the upper water column, we resolved the dominant N sources and processes, including AND/N2-fixation, assimilative fractionation, and nitrification, and quantitatively evaluated their contributions in the vertical distribution of NO3, which can be separated into the Δδ18ONO3-positive (δ18ONO3−obs−δ18ONO3−200m>0) and Δδ18ONO3-negative layers (δ18ONO3−obs−δ18ONO3−200m<0) according to the deviation in δ18ONO3 at a given depth (δ18ONO3-obs) from that at 200 m (δ18ONO3-200m). In the Δδ18ONO3-positive layer, the NO3 assimilated by phytoplankton was largely sourced from nitrification (39 ± 11%) and AND/N2 fixation (17-28%), whereas these two processes accounted for 17 ± 10% and 7 ± 6% of the total NO3 pool in the Δδ18ONO3-negative layer. Considering a substantial contribution of the regenerated (nitrification-sourced) NO3 to the total NO3 pool especially in the Δδ18ONO3-positive layer, caution should be taken that the new production assessed by the rates of NO3 uptake may be significantly overestimated in the SCS. These findings not only highlight the importance of these biogeochemical processes to NO3 dynamics in the upper water column of marginal seas, but also with important implications for the estimation of biological carbon pump and/or the f-ratio.

Funder

National Natural Science Foundation of China

Basic and Applied Basic Research Foundation of Guangdong Province

State Key Laboratory of Marine Resource Utilization in South China Sea

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3