Rapid Landscape Changes in Plastic Bays Along the Norwegian Coastline

Author:

Bastesen Eivind,Haave Marte,Andersen Gidske L.,Velle Gaute,Bødtker Gunhild,Krafft Charlotte Gannefors

Abstract

The Norwegian Coastal Current transports natural debris and plastic waste along the Norwegian coastline. Deposition occurs in so-called wreck-bays and includes floating debris, such as seaweed, driftwood and volcanic pumice, and increasing amounts of plastics during the last decades. Deposition in these bays is controlled by ocean currents, tidal movements, prevailing winds and coastal morphology. We have compared soil profiles, analyzed the vegetation and inspected aerial photos back to 1950 in wreck-bays and defined three zones in the wreck-bays, where accumulation follows distinct physical processes. Zone 1 includes the foreshore deposition and consists of recent deposits that are frequently reworked by high tides and wave erosion. Thus, there is no accumulation in Zone 1. Zone 2 is situated above the high tide mark and includes storm embankments. Here, there is an archive of accumulated debris potentially deposited decades ago. Zone 3 starts above the storm embankments. The debris of Zone 3 is transported by wind from Zone 1 and Zone 2, and the zone continues onshore until the debris meets natural obstacles. Plastic accumulation seems to escalate soil formation as plastic is entangled within the organic debris Mapping and characterizing the soil layers indicates that deep soils have been formed by 50 or more years’ accumulation, while the pre-plastic soil layers are thin. The plastic soil forms dams in rivers and wetlands, changing the shape and properties of the coastal landscape, also altering the microhabitat for plants. This case-study describes an ongoing landscape and vegetation change, evidently co-occurring with the onset of plastic accumulation. Such processes are not limited to the Norwegian coastline but are likely to occur wherever there is accumulation of plastic and organic materials. If this is allowed to continue, we may witness a continued and escalating change in the shape and function of coastal landscapes and ecosystems globally.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3