Whole genome analysis of intestinal source Bacillus and its effect on the prevention and control of hybrid snakehead (Channa maculata ♀ × Channa argus ♂) nocardiosis

Author:

Zhou Tingting,Cai Ping,Li Junwei,Li Zhongsheng,Dan Xueming,Huang Xiande,Zhang Xiaoyong

Abstract

In order to explore the antagonistic mechanism of Lysinibacillus sphaericus AEB18 against Nocardia seriolae, the whole genome of strain AEB18 was sequenced, and the effect of strain AEB18 in controlling nocardiosis of hybrid snakehead was verified in vitro and in vivo. Strain AEB18 genome was a circular DNA of 4,653,716 base pairs (bp) and GC content of 37.4%, predicting 4,529 coding genes, 108 tRNAs, 37 rRNAs, and 95 non-coding (nc)RNAs. The eggNOG (Non-supervised Orthologous Groups), GO (Gene Ontology), KEGG (Kyoto Encyclopedia of Genes and Genomes) and the CAZy (Carbohydrate-Associated Enzyme) database annotated the strain AEB18 genome to 3,965, 3,325, 2,061, and 112 genes, respectively. Furthermore, nine gene clusters, including polyketones, non-ribosomal synthetic peptides, β-lactones, terpenes, ribosomal synthetic peptides, and other secondary metabolites with bacteriostatic effect were obtained through the prediction of secondary metabolites of strain AEB18. After the addition of L. sphaericus AEB18 (1 × 109 CFU/g) with a mass fraction of 1% to the basal diet for 21 days, the weight gain rate and the activity of amylase in intestinal chyme of hybrid snakehead were significantly increased (P< 0.05). In addition, hybrid snakehead fed with L. sphaericus AEB18 supplemented diets showed significantly reduced mortality rate (P< 0.05) after N. seriolae infection, compared with the control group (mortality rate was 100%). Overall, L. sphaericus AEB18 positively affected hybrid snakeheads, promoted growth and reduced mortality rate of hybrid snakeheads with nocardiosis. Taken together, the L. sphaericus AEB18 possesses great potential as a biocontrol agent, which can be commercially developed to improve disease control in freshwater aquaculture.

Funder

China Postdoctoral Science Foundation

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3