Learning hybrid dynamic transformers for underwater image super-resolution

Author:

He Xin,Li Junjie,Jia Tong

Abstract

Underwater image super-resolution is vital for enhancing the clarity and detail of underwater imagery, enabling improved analysis, navigation, and exploration in underwater environments where visual quality is typically degraded due to factors like water turbidity and light attenuation. In this paper, we propose an effective hybrid dynamic Transformer (called HDT-Net) for underwater image super-resolution, leveraging a collaborative exploration of both local and global information aggregation to help image restoration. Firstly, we introduce a dynamic local self-attention to adaptively capture important spatial details in degraded underwater images by employing dynamic weighting. Secondly, considering that visual transformers tend to introduce irrelevant information when modeling the global context, thereby interfering with the reconstruction of high-resolution images, we design a sparse non-local self-attention to more accurately compute self-similarity by setting a top-k threshold. Finally, we integrate these two self-attention mechanisms into the hybrid dynamic transformer module, constituting the primary feature extraction unit of our proposed method. Quantitative and qualitative analyses on benchmark datasets demonstrate that our approach achieves superior performance compared to previous CNN and Transformer models.

Publisher

Frontiers Media SA

Reference38 articles.

1. Pre-trained image processing transformer;Chen,2021

2. Learning a sparse transformer network for effective image deraining;Chen,2023

3. A wavelet based deep learning method for underwater image super resolution reconstruction;Chen,2020

4. Swinwave-sr: Multi-scale lightweight underwater image super-resolution;Dharejo;Inf. Fusion,2024

5. Image super-resolution using deep convolutional networks;Dong,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3