Identifying marine food web homogenization patterns

Author:

Xu Yan,Huo Xumeng,Jordán Ferenc,Zhou Mingliang,Cai Yanpeng,Sun Jun

Abstract

Ecosystems become increasingly similar to each other, based on species composition. Despite the inevitability of homogenized ecosystems due to global change, few studies have specifically addressed the identification of homogeneous systems in food webs. This study focuses on identifying different patterns of marine food web homogenization by selecting 41 marine food webs and establishing an indicator system. The research classifies the food webs into seven main types based on three different homogenization processes (I, II, III, IV, V, VI, and VII), with approximately 60.1%, 46.3%, and 61% of the homogenization being structural, functional, and resource homogenization, respectively. It highlights the importance of homogenization processes in marine ecosystems, which are mainly driven by interactions between structural and resource homogenization. The research found that Type V exhibited universality in both temporal and spatial dimensions, while Type III also showed universality when the food webs were dominated by resource homogenization. On the other hand, Type I, which was associated with human activities, showed locality when the food web only manifested structural homogenization. Functional homogenization often occurred alongside structural homogenization, as seen in Type IV and Type VII. Yet, when the food web exhibited functional homogenization (Type II), it was directly linked to human activities over the past 20 years. The research aimed to improve the methodology in terms of (a) identifying different food web homogenization patterns; (b) establishing indicators system to quantify food web homogenization; and (c) clarifying the ecological significance of food web homogenization. The study provided a comprehensive understanding of food web homogenization and its associated risks, which could inform nature-based ecosystem management strategies to mitigate the impacts of future climate change.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3