SalaciaML: A Deep Learning Approach for Supporting Ocean Data Quality Control

Author:

Mieruch Sebastian,Demirel Serdar,Simoncelli Simona,Schlitzer Reiner,Seitz Steffen

Abstract

We present a skillful deep learning algorithm for supporting quality control of ocean temperature measurements, which we name SalaciaML according to Salacia the roman goddess of sea waters. Classical attempts to algorithmically support and partly automate the quality control of ocean data profiles are especially helpful for the gross errors in the data. Range filters, spike detection, and data distribution checks remove reliably the outliers and errors in the data, still wrong classifications occur. Various automated quality control procedures have been successfully implemented within the main international and EU marine data infrastructures (WOD, CMEMS, IQuOD, SDN) but their resulting data products are still containing data anomalies, bad data flagged as good and vice-versa. They also include visual inspection of suspicious measurements, which is a time consuming activity, especially if the number of suspicious data detected is large. A deep learning approach could highly improve our capabilities to quality assess big data collections and contemporary reducing the human effort. Our algorithm SalaciaML is meant to complement classical automated quality control procedures in supporting the time consuming visually inspection of data anomalies by quality control experts. As a first approach we applied the algorithm to a large dataset from the Mediterranean Sea. SalaciaML has been able to detect correctly more than 90% of all good and/or bad data in 11 out of 16 Mediterranean regions.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference15 articles.

1. Udash-unified database for arctic and subarctic hydrography;Behrendt;Earth Syst. Sci. Data,2018

2. Quality assurance of oceanographic observations: standards and guidance adopted by an international partnership;Bushnell;Front. Mar. Sci,2019

3. A framework to quality control oceanographic data;Castelao;J. Open Source Softw,2020

4. Deep sparse rectifier neural networks,;Glorot,2010

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3