Ocean Dynamics and Topographic Upwelling Around the Aracati Seamount - North Brazilian Chain From in situ Observations and Modeling Results

Author:

Silva Marcus,Araujo Moacyr,Geber Fábio,Medeiros Carmen,Araujo Julia,Noriega Carlos,Costa da Silva Alex

Abstract

The hydrodynamics and the occurrence of topographic upwelling around the northern Brazilian seamount chain were investigated. Meteorological and physical oceanographic data collected under the REVIZEE-NE Program cruises around the Aracati Bank, the major and highly productive seamount in the area, were analyzed and used to force and validate simulations using the 3D Princeton Ocean Model (3D POM). The Tropical Water mass in the top 150-m layer and the South Atlantic Central Water (SACW) beneath it and down to a depth of 670 m was present. The thickness of the barrier layer varied seasonally, being thinner (2 m) during the austral spring (October–December) and thicker (20 m) during the austral autumn (April–June) when winds were stronger. The surface mixed and isothermal layers in the austral winter (July–September) were located at depths of 84 and 96 m, respectively. During the austral spring, those layers were located at depths of 6 and 8 m, respectively. The mean wind shear energy was 9.8 × 10–4 m2 s–2, and the energy of the surface gravity wave break was 10.8 × 10–2 m2 s–2, and both served to enhance vertical mixing in the area. A permanent thermocline between the 70- and 150-m depths was present throughout the year. The isohaline distribution followed an isotherm pattern of variation, but at times, the formation of low-salinity eddies was verified on the bank slope. The 3D POM model reproduced the thermohaline structure accurately. Temperature and salinity profiles indicated the existence of vertical water displacements over the bank and along the direction of the North Brazil Current, which is the strongest western boundary current crossing the equatorial Atlantic. The kinematic structure observed in the simulations indicated vertical velocities of O (10–3 m.s–1) in the upstream region of the bank during austral winter and summer seasons. During the summer, the most important vertical velocities were localized below the lower limit of the euphotic zone; while during the austral winter, these velocities were within the euphotic zone, thereby favoring primary producers.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference87 articles.

1. Computational design of the basic processes of the UCLA general circulation model.;Arakawa;Methods Comput. Phys.,1977

2. Langmuir circulations and enhanced turbulence beneath wind-waves.;Araujo;Ocean Modell.,2001

3. Salinity-induced mixed and barrier layers in the Southwestern tropical Atlantic Ocean off the Northeast of Brazil.;Araujo;Ocean Sci.,2011

4. On the variability in the CO2 system and water productivity in the western tropical Atlantic off North and Northeast Brazil.;Araujo;J. Mar. Syst.,2018

5. 3D characterisation of the thermohaline structure in the southwestern tropical Atlantic derived from functional data analysis of in situ profiles.;Assunção;Prog. Oceanogr.,2020

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3