Toward Exploring Topographic Effects on Evolution and Propagation of Ocean Mesoscale Eddies Through Life Cycle Across Izu-Ogasawara Ridge in Northwestern Pacific Ocean

Author:

Nian Rui,Geng Xue,Zhang Zhengguang,Yuan Minghan,Fu Zhen,Xu Hengfu,Yang Hua,Lai Qi,He Hui,Su Chi Wei,Zang Lina,Yuan Qiang,He Bo

Abstract

Ocean mesoscale eddies contribute significantly to water transport on a global scale, constituting the ubiquitous, irregular, discrete, nonlinear components. In this manuscript, we propose to explore whether and how the topographic effect of one meridional ridge, could exert considerable influences on the evolution and propagation of mesoscale eddies through their life cycle, directly from the perspectives of real observation statistics. We systematically investigate the known variability of mesoscale eddy trajectories, derived by multimission satellite altimetry from 1993 to 2018, of a life cycle more than 6 months, over the Izu-Ogasawara Ridge, and quantitatively examined the eddy-ridge interaction by observation statistics and wavelet coherence map, with respect to the intrinsic attributes, namely, the amplitude, the rotation speed, the radius. Due to the spatial-temporal diversity, a series of correlative steps have been particularly designed along time-frequency domain to trace back mesoscale eddy trajectories in a variety of origins, location, lifespan, polarity, either completely or partially passing over the ridge, and to facilitate the standardization in statistics across three phases of their life cycle, i.e., before, during and after the interaction with the ridge. It has been revealed in our experiment that three intrinsic attributes of mesoscale eddies within 25 years, all demonstrated noticeable correlation with the variation of topographic relief over the ridge. We observed that most of the cyclonic eddies obviously tended to begin to decay or even demise, while on the contrary, some of the anticyclonic eddies preferred to intensify slightly, or making no significant difference when encountering the upslope until climbing across the top, basically consistent with the expectation of potential vorticity (PV) conservation. The drifting velocity agreed with the tendency that the direction would be more probably modified toward equatorward or poleward by forcing to meridional component, with zonal component reduced at the beginning. The mesoscale eddies with the passage over the ridge exhibited the relatively high average horizontal scales, amplitude, rotation speed on the whole, compared to those with only partially passage. The developed scheme could integrate more evidences on how mesoscale eddies response to the topographic effects during their time-varying evolution and propagation process, and help provide opportunities to potentially identify and predict the underlying dynamic patterns and mechanisms that mesoscale eddies engage in ocean dynamics when proceeding toward meridional ridges on a global scale, with the promise of the end-to-end data-driven solution, such as deep learning architecture involved in the future.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference81 articles.

1. An experimental study of a mesoscale vortex colliding with topography of geometry in a rotating fluid.;Adduce;J. Mar. Res.,2004

2. Oil and the macroeconomy: using wavelets to analyze old issues.;Aguiar-Conraria;Empir. Econ.,2011

3. On the influence of submarine ridges on translation and stability of Agulhas rings.;Beismann;J. Geophys. Res.,1999

4. Time Series Analysis Forecasting and Control.

5. Sea level anomaly prediction using recurrent neural networks.;Braakmann-Folgmann;arXiv,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3