Investigating food web structure and system function of an artificial reef ecosystem based on carbon and nitrogen stable isotope analysis: implications for reef management

Author:

Feng Jie,Zhao Xiaolong,Bi Fan,Zhao Wei,Zhao Liang,Song Hao,Yang Meijie,Hu Zhi,Zhou Cong,Shi Pu,Hu Pengpeng,Ma Peizhen,Sun Pengfei,Jiang Han,Xu Jiangling,Zhang Tao

Abstract

IntroductionFood web is an important basis for identifying trophodynamic processes, and evaluating the structural and functional characteristics of ecosystems. The trophodynamics and system function of artificial reef (AR) ecosystems have rarely been examined.MethodsStable isotope analysis was used to investigate the food web structure and functions of an artificial reef (AR) ecosystem in this study.Results and DiscussionThe δ13C and δ15N values of particulate organic matter (POM) in AR showed noticeable seasonal changes, and the δ13C value of POM in autumn was significantly higher than that in other seasons (p<0.05). There were no significant seasonal variations in the δ13C values of solid organic matter (SOM), and no significant difference between SOM and POM was observed except in autumn. Moreover, macroalgae did not significantly affect the δ13C values of SOM. Phytoplankton may be the primary nutrient source in the AR ecosystem. The δ13C values of most crustaceans in the AR were approximately between (-17.03 ± 0.22) ‰ – (-17.74 ± 0.07) ‰, higher than those of most fish, indicating that they may have different basal nutrient sources. The trophic level (TL) of invertebrates was between 2.00 and 3.09, and that of fish was between 2.98 and 3.66. The distribution of δ13C and TLs of crustaceans and fish showed that, except for crustaceans, bivalve shellfish and zooplankton might also be important food sources for fish in the AR ecosystem.ConclusionThe δ13C and δ15N values of most species in the AR showed good continuity, indicating that they may be mainly produced from the AR ecosystem. Migratory species such as Lateolabrax japonicus and Sepiella maindroni showed higher δ13C values, indicating that they may have migrated from other sea areas. To maintain the stability of the ecosystem structure and function of the AR ecosystem, fishing activities should be carried out following the maximum sustainable yield theory. Future research needs to identify the nutritional relationship between AR and its adjacent sea areas, to depict the food web structure of the AR with higher accuracy.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference110 articles.

1. Artificial reef research: a review with recommendations for future priorities;Bohnsack;Bull. Mar. Science.,1985

2. Ecology of artificial reef habitats and fishes;Bohnsack,1991

3. Effects of reef size on colonization and assemblage structure of fshes at artifcial reefs off southeast-ern Florida, U.S.A;Bohnsack;Bull. Mar. Sci.,1994

4. Resolving the attraction-production dilemma in artificial reef research: some yeas and nays;Bortone;Fisheries.,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3