Estuarine nutrient pollution impact reduction assessment through euphotic zone avoidance/bypass considerations

Author:

Khangaonkar Tarang,Yun Su Kyong

Abstract

The feasibility of reducing nutrient pollution impact by redirecting the effluent to depths below the euphotic zone was investigated for the deep estuarine Puget Sound region of the Salish Sea in the Pacific Northwest of America. The hypothesis tested was that the thickness of the outflow layer in deep estuaries may be greater than the euphotic zone depth, allowing a fraction of nutrients to be exported out passively through the layers immediately below. The euphotic zone depth in Puget Sound varies from 8 to 25 m while the depth of the outflow layer can reach up to ≈ 60 m. Outfall relocation strategies were tested on 99% of the anthropogenic nutrient loads currently delivered to Puget Sound. The impact was quantified using the previously established biophysical Salish Sea Model, using gross primary production and exposure to low dissolved oxygen (DO) levels as the metric (< 2 mg/L for hypoxia and < 5 mg/L for impairment). Eliminating nutrient pollution (above natural) from rivers and wastewater reduced hypoxia exposure by 8.1% and 11.2%, respectively. Relocating the outfalls to deeper waters resulted in improvements, but only in the sill-less sub-basins such as Whidbey, where hypoxia and DO impairment exposure decreased (7.9% and 6.8%, respectively). The presence of multiple sills and circulation cells in Puget Sound resulted in increased exposure and rendered nutrient bypass goals unfeasible as originally envisioned. However, an alternate nutrient export pathway was identified through bottom exchange flow out of Puget Sound via Whidbey Basin and Deception Pass. An unexpected reduction in the exchange outflow magnitude (≈ 4%) due additional (22%) freshwater discharged to the estuary bottom was also noted. The potential loss in circulation strength due to rerouting of natural surface freshwater through submerged deep-water outfalls is identified as a new unforeseen anthropogenic impact.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference40 articles.

1. Technical memorandum: puget sound nutrient source reduction project phase –I - optimization scenarios (Year 1);Ahmed,2021

2. South puget sound flushing times and residual flows;Ahmed;Estuar. Coast. Shelf. Sci.,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3