Density of Compatible Ligands on the Surface of Food Particles Modulates Sorting Efficiency in the Blue Mussel Mytilus edulis

Author:

Pales Espinosa Emmanuelle,Eckstein Margot,Allam Bassem

Abstract

The adhesion between food particles and mucus is a fundamental process in particle sorting in suspension-feeding bivalves that requires specific recognition. Interactions between carbohydrate-binding proteins (lectins) expressed on the feeding organs and carbohydrates present on microbial cell surface can provide this specificity. Microalga cell surface carbohydrates (MCSC) represent unique patterns that can be considered as species-specific fingerprints. In this study, sorting efficiencies in blue mussels Mytilus edulis fed with microalgae having modified MCSC and engineered microspheres coated with target carbohydrates was measured. The nature and quantities of surface carbohydrates required to trigger sorting in mussels was evaluated and the relationship between ligand quantities and sorting efficiency (SE) was determined. Mussels fed with Chlamydomonas which MCSC were blocked with ConA or PEA lectins (affinity to mannose and glucose) led to a significant decrease of the sorting efficiencies, not observed when the lectin UEA (affinity to fucose) was used. The ability of commercial lectins to inhibit sorting was not linear and a threshold was noted between 30 and 45 ug lectins per million algae cells. Further, mussels were fed with microspheres coated with neoglycoproteins. Results showed that glucose-BSA, but not fucose-BSA, has an effect on particle sorting in mussels, and 1.08 x 109 molecules of glucose per microspheres, corresponding to a density of 6.99 x 106 molecules of glucose per µm2, triggers particle selection. These findings support that selection of food particles by mussels rely on the strength of the bond between suspended particle and the mucosal layer that mediate sorting, and that these bonds depend on the quantity of compatible ligands on each particle.

Funder

Stony Brook University

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3