Quantifying conditional probabilities of fish-turbine encounters and impacts

Author:

Peraza Jezella I.,Horne John K.

Abstract

Tidal turbines are one source of marine renewable energy but development of tidal power is hampered by uncertainties in fish-turbine interaction impacts. Current knowledge gaps exist in efforts to quantify risks, as empirical data and modeling studies have characterized components of fish approach and interaction with turbines, but a comprehensive model that quantifies conditional occurrence probabilities of fish approaching and then interacting with a turbine in sequential steps is lacking. We combined empirical acoustic density measurements of Pacific herring (Clupea pallasii) and when data limited, published probabilities in an impact probability model that includes approach, entrainment, interactions, and avoidance of fish with axial or cross-flow tidal turbines. Interaction impacts include fish collisions with stationary turbine components, blade strikes by rotating blades, and/or a collision followed by a blade strike. Impact probabilities for collision followed by a blade strike were lowest with estimates ranging from 0.0000242 to 0.0678, and highest for blade strike ranging from 0.000261 to 0.40. Maximum probabilities occurred for a cross-flow turbine at night with no active or passive avoidance. Estimates were lowest when probabilities were conditional on sequential events, and when active and passive avoidance was included for an axial-flow turbine during the day. As expected, conditional probabilities were typically lower than analogous independent events and literature values. Estimating impact probabilities for Pacific herring in Admiralty Inlet, Washington, United States for two device types illustrates utilization of existing data and simultaneously identifies data gaps needed to fully calculate empirical-based probabilities for any site-species combination.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference45 articles.

1. Refining estimates of collision risk for harbour seals and tidal turbines;Band,2016

2. Modeling the probability of overlap between marine fish distributions and marine renewable energy infrastructure using acoustic telemetry data;Bangley;Front. Mar. Sci.,2022

3. Imaging-sonar observations of salmonid interactions with a vertical axis instream turbine;Bender,2023

4. Salmonid response to a vertical axis hydrokinetic turbine in a stream aquarium. In 13th European Wave and Tidal Energy Conference (EWTEC).;Berry,2019

5. Hydroacoustic assessment of behavioral responses by fish passing near an operating tidal turbine in the east river, new york’;Bevelhimer;Trans. Am. Fisheries Soc.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3