Gelatinous Carbon Impacts Benthic Megafaunal Communities in a Continental Margin

Author:

Lebrato Mario,Molinero Juan-Carlos,Mychek-Londer Justin G.,Gonzalez Elena Mateo,Jones Daniel O. B.

Abstract

Post-collapse of seasonal blooms of gelatinous zooplankton (Cnidaria, Ctenophora, and Thaliacea) sinking carcasses transports labile carbon (jelly-C) to benthic continental margins and the deep sea. In recent decades, bloom frequency and intensity have increased globally; however, how sinking jelly-C affects benthic communities is poorly known. Further, as climate change and other anthropogenic impacts may increase gelatinous blooms in the future, understanding the contributions and impacts of jelly-C upon benthic communities is of pivotal importance. Thus, in this study, we assessed jelly-C deposits post-intense blooming of a pelagic species of marine colonial gelatinous tunicate in the Thaliacean class, Pyrosoma atlanticum. We studied the seabed using a remotely operated vehicle (ROV) from 26 to 1,276 m, documenting jelly-C deposits and species of the megafaunal benthic community. Environmental variables from water column profiles at transects near our own off the Ivory Coast of West Africa were used in assessments. Jelly-C biomass peaked at 400 m (1,500 grC 100 m−2) and remained at the average (300 grC 100 m−2) through 1,276 m. Typically, in depth strata between 300 and 800 m, peaks in jelly-C biomass (500 to 1,500 grC 100 m−2) corresponded to areas with significantly reduced benthic megafaunal species abundances as well as diversity. From 800 to 1,276 m, we noted patchier jelly-C biomass deposits where individual megafauna species abundances and diversity correspondingly increased, yet total organism counts remained low. We observed 11 species from 5 phyla directly feeding on jelly-C and 10 single-species aggregations triggering megafaunal dominance events at various localized depth strata. Although such dynamics have been hypothesized and examined for some time with respect to phytodetritus biomass, they have been rarely described for jelly-C. Thus, our novel findings for jelly-C dynamics in the offshore regions can help to provide a better understanding of the ecological role that this component plays in marine benthic ecosystems and continental margins.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3