Shrinking of the Arabian Sea oxygen minimum zone with climate change projected with a downscaled model

Author:

Vallivattathillam Parvathi,Lachkar Zouhair,Lévy Marina

Abstract

In Arabian Sea (AS), land-locked northern boundary and strong seasonal productivity lead to the formation of one of the most intense open ocean Oxygen Minimum Zones (OMZs). Presence of this perennial OMZ has significant consequences on adjacent coastal fisheries and ecosystem. Simulations from CMIP5 suggest significant weakening of both monsoonal winds and productivity under high emission scenario. But the fate of AS OMZ in this scenario - whether it will expand or shrink - still remains elusive, mainly due to poor representation of extent and strength of AS OMZ in CMIP5 present-day simulations. To address this, we analyze the distribution of O2 in AS from a subset of three contrasted CMIP5 simulations, and complemented with a set of regional downscaled model experiments which we forced at surface and open boundaries using information from those three CMIP5 models. We tested two regional downscaling approaches - with and without correction of CMIP5 biases with respect to observations. Using a set of sensitivity experiments, we disentangle the contributions of local (atmospheric) forcing vs. remote (at the lateral boundaries) forcing in driving the future projected O2 changes. While CMIP5 projects either shrinking or expansion of the AS OMZ depending on the model, our downscaling experiments consistently project a shrinking of AS OMZ. We show that projected O2 changes in OMZ layer are affected by both local and remote processes. In the southern AS, the main response to climate change is oxygenation that originates from the boundaries, and hence downscalled and CMIP5 model responses are similar. In contrast, in northern AS, downscaling yields a substantial reduction in O2 projection discrepancies because of a minimal influence of remote forcing there leading to a stronger sensitivity to improved local physics and improved model representation of present-day conditions. We find that when corrected for present-day biases, projected deoxygenation in the northern AS is shallower. Our findings indicate the importance of downscaling of global models in regions where local forcing is dominant, and the need for correcting global model biases with respect to observations to reduce uncertainties in future O2 projections.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3