Acoustic Telemetry Around Western Australia’s Oil and Gas Infrastructure Helps Detect the Presence of an Elusive and Endangered Migratory Giant

Author:

Thomson Paul G.,Pillans Richard,Jaine Fabrice R. A.,Harcourt Robert G.,Taylor Michael D.,Pattiaratchi Charitha B.,McLean Dianne L.

Abstract

Subsea infrastructure of the oil and gas industry attracts commercial fish species as well as megafauna including sea lions, turtles, sharks and whales. Potential impacts of this attraction, whether positive or negative, are unknown. As part of a pilot study, we deployed acoustic telemetry equipment around offshore infrastructure to assess its effectiveness in detecting tagged marine animals and to gain insights into patterns of megafauna occurrence around these structures. Acoustic receivers were placed around four oil and gas platforms and on two remotely operated vehicles (ROVs) on Australia’s North West Shelf. Two whale sharks (Rhincodon typus) tagged in the World Heritage Ningaloo Reef Marine Park were detected at two platforms, North Rankin A and Pluto, located up to 340 km to the northeast. The shark at North Rankin A was detected infrequently and only 15 times over ∼6 weeks. The shark at Pluto was detected each day of the 24-day deployment, in total 4,894 times. Detections at Pluto platform were highest during the day, with peaks at dusk and dawn. Our study indicates that acoustic telemetry around platforms may be an effective method for understanding how marine megafauna utilise these structures. We recommend collaborating with industry to undertake receiver detection range testing to understand the effectiveness of the method. Furthermore, future studies should co-occur with tagging programs at sites like Ningaloo Reef and around the structures themselves to maximise the probability of detecting animals at these sites, thereby improving our understanding of how marine megafauna interact with these structures.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3