Ocean Currents May Influence the Endolithic Bacterial Composition in Coral Skeletons

Author:

Liu Po-Yu,Yang Sung-Yin,Lu Chih-Ying,Wada Naohisa,De Palmas Stéphane,Yeh Shu-Shuo,Yamashiro Hideyuki,Tang Sen-Lin,Yang Shan-Hua

Abstract

Coral endolithic microbes can be an important nutrients support for hosts while under stresses. Previous studies have found that the endolithic microbial composition of a single coral species can be biogeographical diverse. However, the potential environmental factors, such as salinity, temperature, pH, and nutrient, that might influence the composition of the endolithic microbes remain unclear. In this study, we used both amplicon sequence variants (ASV) and a kmer-based taxonomic unit (KTU) to characterize the endolithic bacterial constitution of Isopora spp. located in the western Pacific Ocean—where it is subjected to the Kuroshio Current (in Okinawa, Japan and Green Island, Taiwan)—and the South China Sea (Dongsha Atoll). The endolithic bacterial community compositions showed a significant geographical difference, and we suggest that the ocean current and primary productivity are the most essential environmental factors influencing the bacterial communities in the skeleton of Isopora spp. In addition, our results showed that, technically, compared to ASV, bacterial composition based on KTU avoids extreme data, making it a suitable tool for explaining the associations between microbes and environmental factors.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3