Occurrence and Distribution of Microplastics in Soils and Intertidal Sediments at Fildes Bay, Maritime Antarctica

Author:

Perfetti-Bolaño Alessandra,Araneda Alberto,Muñoz Katherine,Barra Ricardo O.

Abstract

Increased human activity on the Antarctic Peninsula has generated microplastic contamination in marine systems; however, less attention has been paid to soils so far. We investigated the occurrence of microplastics in 11 surface soils and intertidal sediments collected from Fildes Bay, King George Island. A transect of soils at Antarctic stations until Fildes Bay was made (i.e., S1–S5). Intertidal sediments along the shore (i.e., IS1–IS5) and a reference sample from Ardley Island (i.e., IS6) were also collected. All samples were stored at 4°C and analyzed for the organic matter content, particle size, and pH. Plastic particles were counted and classified by shape using metal dissecting forceps and a stereomicroscope and further analyzed by Fourier-transform infrared spectroscopy (FT-IR). They were classified by length as fibers (length: 500–2,000 μm) and fragments (length: 20–500 μm). In soil, fragments reached an average of 13.6 particles/50 ml sample, while in intertidal sediments, no fragments were found, but a fiber abundance of 1.5 particles/50 ml sample was observed. The principal component analysis shows a relationship between fibers and intertidal sediments, whereas fragments present a relationship with soils. There were differences between the numbers of fragments found in soils and intertidal sediments (p = 0.003), with a high abundance of fragments at site S5, but no significant differences were observed for fibers. The physicochemical soil analysis revealed that larger particle sizes were observed in intertidal sediments (average = 706.94 ± 230.51 μm) than in soils (p = 0.0007). The organic matter content was higher in soil than in intertidal sediments (p = 0.006) reaching an average of 6.0%. Plastic fragments and organic matter were significantly correlated (r = 0.779, p = 0.005), while fibers were positively correlated with particle size (r = 0.713, p = 0.014). The fragments were composed of phenoxy resin with the same appearance, shape, and bright orange color as the coatings of the facilities. According to the FT-IR analysis, the fibers had different colors and were composed of polyethylene terephthalate (PET). Cotton was also present at the sites surrounding the sampling site close to the base effluent. The presence of fiber on Ardley Island (i.e., control) may indicate that microplastic contamination has reached protected areas. This is the first study to confirm the presence of plastic debris in Antarctic soils. Further studies should focus on the identification of plastic sources and on the management of human activities and their eventual effects on biota.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference81 articles.

1. Assessing trace element contamination in Fildes peninsula (king George Island) and Ardley Island, Antarctic.;Amaro;Mar. Pollut. Bull.,2015

2. Association of metals with plastic production pellets in the marine environment.;Ashton;Mar. Pollut. Bull.,2010

3. Macroplastics at sea around Antarctica.;Barnes;Mar. Environ. Res.,2010

4. Contribuições ao conhecimento da fauna de Cnidarios do Espírito Santo, Brasil. l. considerações sobre Actiniaria do Município de Aracruz, ES;Belém;Bol. Mus. Biol. Prof. Mello Leitão, S. Zoologia,1973

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3