Succession of protistan functional traits is influenced by bloom timing

Author:

Péquin Bérangère,LaBrie Richard,St-Gelais Nicolas Fortin,Maranger Roxane

Abstract

Surface ocean eukaryotic phytoplankton biogeography can be determined as chlorophyll-a using remote sensing techniques yet evaluating its community composition remains limited. Given our ability to track site-specific chlorophyll-a concentration, we tested which factors influenced protistan functional trait distribution, and whether the distributions can be inferred from bloom succession. Here we surveyed the Labrador Sea during spring over three consecutive years, sequenced 18S data over 15 stations and collected satellite-derived chlorophyll-a concentration from March to July for each year. We evaluated changes in distribution of taxonomic composition as well as the functional traits of protistan size, trophic strategy (defined as phototrophy, phagotrophy, and mixotrophy as capable of both), motility and dimethylsulfoxide or dimethylsulfoniopropionate production by building a functional trait database after an extensive literature review. More variability in the biogeography of protistan functional traits was explained across water masses, and among years than taxonomic composition and patterns in trait variability were more apparent when site-specific timing of peak chlorophyll-a was considered. We found that reconstructing bloom phenology using days before peak (DBP) chlorophyll explained a significant amount of variability in functional trait community structure that was previously attributed to water masses or years, suggesting that spatial and interannual variations can be explained by the sampling moment during succession. Approximately 30 days prior to peak, mixotrophy as a trophic strategy was replaced by phototrophic protists of typically larger size classes. Our work suggests DBP influences protistan community trait succession that could inform biogeochemical models, and likely acts a proxy for the onset of stratification.

Funder

Fonds de recherche du Québec – Nature et technologies

Natural Sciences and Engineering Research Council of Canada

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3