Interactive Immunomodulation in the Mediterranean Mussel Mytilus galloprovincialis Under Thermal Stress and Cadmium Exposure

Author:

Nardi Alessandro,Benedetti Maura,Gorbi Stefania,Regoli Francesco

Abstract

Marine bivalves are frequently exposed to multiple co-occurring challenges such as temperature extremes and anthropogenic pollution. These stressors can elicit negative effects on several biological pathways, including antioxidant and neuroendocrine-immune (NEI) systems, leading to immune disorders and altered immunocytes functionality. Since interactive mechanisms of action and resulting outcomes are still scarcely explored, we examined the single and combined effects of increased temperature (+5°C) and cadmium (20 μg/L) in the Mediterranean mussel Mytilus galloprovincialis. Analyzed parameters included cholinergic system in gills and hemolymph (acetylcholinesterase activity, AChE), total oxyradical scavenging capacity in gills and key functional processes in hemocytes, including lysosomal membrane stability, hemocytes subpopulations ratio, phagocytosis capacity, and onset of genotoxic damage. Results highlighted interactive inhibition of AChE activity along to a concomitant increased total oxyradical scavenging capacity, confirming neuroendocrine-immune system (NEI) disturbance and oxidative pressure. In hemocytes, lysosomal membrane stability and granulocytes:hyalinocytes ratio revealed additive effects of stressors, while a consistent reduction of phagocytosis was caused by temperature stress, with a slightly antagonistic effect of cadmium. Pearson’s correlation statistics provided either positive or negative relationships between investigated parameters and stressors, allowing to hypothesize putative mechanism of immune system functional alterations. The overall results suggest that the occurrence of short-term events of increased temperature and concomitant metal exposure could elicit interactive and negative effects on immune system efficiency of marine organisms.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3