Understanding Effects of Whale-Watching Vessel Noise on Humpback Whale Song in the North Pacific Coast of Colombia With Propagation Models of Masking and Acoustic Data Observations

Author:

Rey-Baquero Maria Paula,Huertas-Amaya Laura Valentina,Seger Kerri D.,Botero-Acosta Natalia,Luna-Acosta Andrea,Perazio Christina E.,Boyle John K.,Rosenthal Sarah,Vallejo Ann Carole

Abstract

Soundscapes with minimal anthropogenic noise sources are key for the survival and effective communication of marine mammals. The Gulf of Tribugá is part of the breeding ground for humpback whale Stock G. Currently, no large-scale infrastructure exists on the Gulf's coastline, making it an area with high biodiversity and little anthropogenic noise. Whale-watching is one of the few human activities that contributes to the soundscape. By Morro Mico, on the southern limit of the Utría Natural National Park, an Ecological Acoustic Recorder (EAR, Oceanwide Science Institute) was deployed in the Gulf to record samples of acoustic activity from October to November 2018. It recorded for 10-min intervals with 20-min lapses for a duty cycle of 33.3%. One of the common peak frequencies of humpback whale song units from these recordings was used as input to an acoustic propagation model using the parabolic equation to simulate the communication space of a humpback whale when zero, one, and two boats are present. GPS positions of theodolite data from various whale watching scenarios in the Gulf were used to inform the models. Model results indicate that humpback whale song communication space could be reduced by as much as 63% in the presence of even one whale-watching boat. The boats traveling through the Gulf are the same as those used in whale-watching, and their engine noise while passing Morro Mico coincided with song structural and temporal changes observed in the acoustic data. Combining in situ data with acoustic models can advance the understanding of the spatio-temporal acoustic reactions of whales when their vocalizations are masked by boat noise. This project serves as an approximation of how humpback whale Stock G may respond to whale-watching vessel noise in the Gulf of Tribugá.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3