Long-term response of an estuarine ecosystem to drastic nutrients changes in the Changjiang River during the last 59 years: A modeling perspective

Author:

Shi Shenyang,Xu Yi,Li Weiqi,Ge Jianzhong

Abstract

The riverine nutrient inputs to the ocean reflects land-use changes and can affect the health of coastal environments over time, especially for a highly-anthropogenically influenced river-estuary-shelf system. To investigate the impact of riverine inputs on the Changjiang Estuary ecosystem at a multi-decadal time scale where long-term observations are limited, we built a three-dimensional physics-biogeochemistry-coupled model system based on the Finite-Volume Community Ocean Model (FVCOM) and the European Regional Shelf Ecosystem Model (ERSEM). Our model successfully simulated the temporal and spatial nutrient variabilities in the river-estuary-shelf con7tinuum from 1960 to 2018. The results showed increasing trends of nitrate and phosphate and fluctuating silicate variability, thereby leading to rising nitrogen (N) to phosphorus (P) ratios and decreasing silicon (Si) to N and P ratios. Such changes in the stoichiometric relationship of nutrient species also alter the community structure of the primary producers in estuaries. Our model showed a general increase of diatoms over the 59 years, corresponding to decreased proportions of micro-phytoplankton and pico- phytoplankton. With different backgrounds of light and nutrient limitations in the river and inner shelf, our model suggests that the trend of the diatom proportion in the light-limited river mouth is more associated with silicate variability, with decreased diatom proportions occurring in the 2000s. Our model relates the hydroclimate, nutrient load, and biogeochemical cycling, reproducing estuarine ecosystem variability and clarifying issues such as the causality of the ecosystem interactions.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3