Controlling factor analysis of oceanic surface pCO2 in the South China Sea using a three-dimensional high-resolution biogeochemical model

Author:

Zhang Miaoyin,Zhu Xueming,Ji Xuanliang,Zhang Anmin,Zheng Jingjing

Abstract

The oceanic surface pressure of CO2 (pCO2) is an essential parameter for understanding the global and regional carbon cycle and the oceanic carbon uptake capacity. We constructed a three-dimensional physical-biogeochemical model with a high resolution of 1/30° for the South China Sea (SCS) to compensate for the limited temporal coverage and limited spatial resolution of the observations and numerical models. The model simulated oceanic surface pCO2 from 1992 to 2021, and the empirical orthogonal function analysis (EOF) of the model results is conducted for a better understanding of the seasonal and interannual variations of oceanic surface pCO2 in this region. The model results showed that the SCS serves as an atmospheric CO2 source from March to October and a sink from November to February, with a domain-averaged climatological oceanic surface pCO2 value that varies between 357 and 408 μatm, and the temporal variation was positively correlated with the variation of sea surface temperature (SST). The majority of the SCS showed a long-term increasing trend for oceanic surface pCO2 with a value of (1.19±0.60) μatm/a, which is in response to the continuously rising atmospheric CO2 concentration. The first EOF mode is positively correlated with the Niño 3 index with a correlation coefficient of 0.51 when the Niño 3 leads 5 months, and the second EOF mode is correlated with the PDO index when the PDO leads 7 months, which suggests an influence of climate variability on the carbonate system. Moreover, it was found that the long-term trend rate of oceanic surface pCO2 was mainly controlled by total CO2 (TCO2) through the decomposition of influence factors, and SST variation took a dominant role in seasonal variations of pCO2. With rapid global warming and continuous release of CO2, the carbonate system in the SCS may change leading to calcite and aragonite saturation.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3