Applying Limnological Feature-Based Machine Learning Techniques to Chemical State Classification in Marine Transitional Systems

Author:

Concepcion Ronnie,Dadios Elmer,Bandala Argel,Caçador Isabel,Fonseca Vanessa F.,Duarte Bernardo

Abstract

On a global scale, marine transitional waters have been severely impacted by anthropogenic activities. Historically, developing human civilizations have often settled in coastal areas with about 2/3 of the human population inhabiting areas within 20-km range from coastal areas. Environmental management worldwide strives for sustainable development while minimizing impacts to ecosystem integrity and has resulted in several framework directives, management programs, and legislation compelling governments to monitor their coastal systems and improve environmental quality. Among the most significant anthropogenic impacts to these ecosystems are land reclamation, dredging, pollution (sediment discharges, hazardous substances, litter, oil spills, and eutrophication), unsustainable exploitation of marine resources (sand extraction, oil and gas exploitation, and fishing), unmanaged tourism activities, the introduction of non-indigenous species, and climate change. The multitude of stressors is not independent, and as such, the chemical status of marine systems has serious implications on its ecological status and needs to be addressed efficiently. Public monitoring databases provide a large amount of physico-chemical (nutrient, dissolved oxygen, and chlorophyll a concentration) and contaminant (trace metals and polycyclic aromatic hydrocarbons) data for all Portuguese transitional systems (estuaries and coastal lagoons). These data are used to classify the chemical status (eutrophication and contamination level) of these ecosystems considering pre-defined classification thresholds, which facilitates communication to government authorities and management entities. Artificial intelligence and machine learning techniques provide an automated and efficient opportunity to improve simulation accuracy and further advance our understanding of environmental problems in estuarine and coastal waters when dealing with large environmental datasets. In the present work, we applied machine learning models, namely, linear discriminant analysis, classification tree, naive Bayesian, and support vector machine, to nutrient, dissolved oxygen, chlorophyll a, trace metals, and polycyclic aromatic hydrocarbon concentrations to produce a chemical status classification of the Portuguese marine transition systems. This approach allowed us to efficiently classify in an automated way the transitional water’s chemical status within the pre-defined classification thresholds, producing numerical index values that can easily be communicated to the general public and managers alike.

Funder

Fundação para a Ciência e a Tecnologia

Horizon 2020 Framework Programme

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3