A model for community-driven development of best practices: the Ocean Observatories Initiative Biogeochemical Sensor Data Best Practices and User Guide

Author:

Palevsky Hilary I.,Clayton Sophie,Benway Heather,Maheigan Mairead,Atamanchuk Dariia,Battisti Roman,Batryn Jennifer,Bourbonnais Annie,Briggs Ellen M.,Carvalho Filipa,Chase Alison P.,Eveleth Rachel,Fatland Rob,Fogaren Kristen E.,Fram Jonathan Peter,Hartman Susan E.,Le Bras Isabela,Manning Cara C. M.,Needoba Joseph A.,Neely Merrie Beth,Oliver Hilde,Reed Andrew C.,Rheuban Jennie E.,Schallenberg Christina,Walsh Ian,Wingard Christopher,Bauer Kohen,Chen Baoshan,Cuevas Jose,Flecha Susana,Horwith Micah,Melendez Melissa,Menz Tyler,Rivero-Calle Sara,Roden Nicholas P.,Steinhoff Tobias,Trucco-Pignata Pablo Nicolás,Vardaro Michael F.,Yoder Meg

Abstract

The field of oceanography is transitioning from data-poor to data-rich, thanks in part to increased deployment of in-situ platforms and sensors, such as those that instrument the US-funded Ocean Observatories Initiative (OOI). However, generating science-ready data products from these sensors, particularly those making biogeochemical measurements, often requires extensive end-user calibration and validation procedures, which can present a significant barrier. Openly available community-developed and -vetted Best Practices contribute to overcoming such barriers, but collaboratively developing user-friendly Best Practices can be challenging. Here we describe the process undertaken by the NSF-funded OOI Biogeochemical Sensor Data Working Group to develop Best Practices for creating science-ready biogeochemical data products from OOI data, culminating in the publication of the GOOS-endorsed OOI Biogeochemical Sensor Data Best Practices and User Guide. For Best Practices related to ocean observatories, engaging observatory staff is crucial, but having a “user-defined” process ensures the final product addresses user needs. Our process prioritized bringing together a diverse team and creating an inclusive environment where all participants could effectively contribute. Incorporating the perspectives of a wide range of experts and prospective end users through an iterative review process that included “Beta Testers’’ enabled us to produce a final product that combines technical information with a user-friendly structure that illustrates data analysis pipelines via flowcharts and worked examples accompanied by pseudo-code. Our process and its impact on improving the accessibility and utility of the end product provides a roadmap for other groups undertaking similar community-driven activities to develop and disseminate new Ocean Best Practices.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3