A learnable full-frequency transformer dual generative adversarial network for underwater image enhancement

Author:

Zheng Shijian,Wang Rujing,Zheng Shitao,Wang Liusan,Liu Zhigui

Abstract

Underwater applications present unique challenges such as color deviation, noise, and low contrast, which can degrade image quality. Addressing these issues, we propose a novel approach called the learnable full-frequency transformer dual generative adversarial network (LFT-DGAN). Our method comprises several key innovations. Firstly, we introduce a reversible convolution-based image decomposition technique. This method effectively separates underwater image information into low-, medium-, and high-frequency domains, enabling more thorough feature extraction. Secondly, we employ image channels and spatial similarity to construct a learnable full-frequency domain transformer. This transformer facilitates interaction between different branches of information, enhancing the overall image processing capabilities. Finally, we develop a robust dual-domain discriminator capable of learning spatial and frequency domain characteristics of underwater images. Extensive experimentation demonstrates the superiority of the LFT-DGAN method over state-of-the-art techniques across multiple underwater datasets. Our approach achieves significantly improved quality and evaluation metrics, showcasing its effectiveness in addressing the challenges posed by underwater imaging. The code can be found at https://github.com/zhengshijian1993/LFT-DGAN.

Publisher

Frontiers Media SA

Reference48 articles.

1. Learning a deep single image contrast enhancer from multi-exposure images;Cai;IEEE Trans. Image Process.,2018

2. Drop an octave: Reducing spatial redundancy in convolutional neural networks with octave convolution;Chen,2019

3. Hinet: Half instance normalization network for image restoration;Chen,2021

4. Nice: Non-linear independent components estimation;Dinh;arXiv preprint arXiv:1410.8516,2014

5. Transmission estimation in underwater single images;Drews,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3