Derivation and Evaluation of Satellite-Based Surface Current

Author:

Choi Jun Myoung,Kim Wonkook,Hong Tran Thy My,Park Young-Gyu

Abstract

Observations of real-time ocean surface currents allow one to search and rescue at ocean disaster sites and investigate the surface transport and fate of ocean contaminants. Although real-time surface currents have been mapped by high-frequency (HF) radar, shipboard instruments, satellite altimetry, and surface drifters, geostationary satellites have proved their capability in satisfying both basin-scale coverage and high spatiotemporal resolutions not offered by other observational platforms. In this paper, we suggest a strategy for the production of operational surface currents using geostationary satellite data, the particle image velocimetry (PIV) method, and deep learning-based evaluation. We used the model scalar field and its gradient to calculate the corresponding surface current via PIV, and we estimated the error between the true velocity field and calculated velocity field by the combined magnitude and relevance index (CMRI) error. We used the model datasets to train a convolutional neural network, which can be used to filter out bad vectors in the surface current produced by arbitrary model scalar fields. We also applied the pretrained network to the surface current generated from real-time Himawari-8 skin sea surface temperature (SST) data. The results showed that the deep learning network successfully filtered out bad vectors in a surface current when it was applied to model SST and created stronger dynamic features when the network was applied to Himawari SST. This strategy can help to provide a quality flag in satellite data to inform data users about the reliability of PIV-derived surface currents.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3