Intra-Annual Sea Level Fluctuations and Variability of Mesoscale Processes in the Northern Japan/East Sea From Satellite Altimetry Data

Author:

Trusenkova Olga,Kaplunenko Dmitry

Abstract

Intra-annual sea level fluctuations and variability of mesoscale processes based on eddy kinetic energy (EKE) were studied in the northern (northward of 41 N) Japan/East Sea (JES) using data from satellite altimetry for 1993–2020. Decomposition to empirical orthogonal functions (EOF) was performed of the high-pass filtered, with the cut-off period of 250 days, sea level anomalies. The leading mode accounting for the major fraction of the variance yielded sea level fluctuations which were simultaneous in the entire sea and occurred in the range from 70 to 250 days without any preferable timescale. EKE in the northern sea was also expanded to EOF and yielded the leading mode capturing mesoscale variability within the Primorye (Liman) Current and the Tsushima Warm Current. The seasonal signal was found in the simultaneous intra-annual sea level fluctuations, which matches that of EKE, and, as found in the earlier studies, of the mean currents. The sea level rises, the mean currents intensify and EKE increases in summer and fall and the opposite changes occur in winter and spring, with the seasonal extremes in October/November and March/April, respectively. This is in line with the EKE generation by instability of the mean currents. The intra-annual sea level fluctuations and EKE manifest rich variability on quasi-biennial, interannual and decadal timescales. However, in contrast with the seasonal signal, the low-frequency variability does not match, implying different kinds of forcing, probably by local wind in the northern JES and by the transport variations in the Korea – Tsushima Strait (KTS) in the southern JES. Intra-annual simultaneous SLA reveal changing relationship with Pacific Decadal Oscillation (PDO): both were in-phase in 1993–1994 and from late 2007 to 2013 and out-of-phase from 1997 to 2002, while there was no specific relationship in other times. However, the relationship of these SLA with the interannual KTS transport variation seems inconclusive.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3