Development of a GNSS/INS buoy array in preparation for SWOT validation in Bass Strait

Author:

Zhou Boye,Watson Christopher,Beardsley Jack,Legresy Benoit,King Matt A.

Abstract

In preparation for validation of the swath-based altimetry mission (Surface Water Oceanography Topography, SWOT), we developed a buoy array, equipped with Global Navigation Satellite System/Inertial Navigation System, capable of accurately observing sea surface height (SSH), wave information and tropospheric delay. Here we present results from an 8-day trial deployment at five locations along a Sentinel-6 Michael Freilich (S6MF) ground track in Bass Strait. A triplet buoy group including two new buoys (Mk-VI) and a single predecessor (Mk-IV) were deployed in proximity to the historic Jason-series comparison point. SSH solutions compared against an in-situ mooring suggest the new buoys were working at an equivalent precision of ~1.5 cm to the previous design (MK-IV). At 10-km spacing along the S6MF track, the buoy array was shown to observe the progression of oceanographic and meteorological phenomena. Tidal analysis of the buoy array indicated moderate spatial variability in the shallow water tidal constituents, with differences in the instantaneous tidal height of up to ~0.2 m across the 40-km track. Further, tidal resonance within Bass Strait was observed to vary, most probably modulated by atmospheric conditions, yet only partially captured by an existing dynamic atmospheric correction product. A preliminary investigation into the spatial scale of the buoy error based on observed/inferred geostrophic currents with our present buoy array configuration suggests that the signal-noise ratio of the array became significant at 20-km spacing in Bass Strait. Finally, as an illustrative comparison between the buoy array and high resolution S6MF data, a single cycle was compared. The wet tropospheric delay observed by the S6MF radiometer exhibited some potential land contamination in the deployed area, while the 1-Hz and 20-Hz significant wave height from S6MF appeared within mission requirements. Generally good agreement between buoy and altimeter SSH was observed. However, subtle differences between the altimeter and the buoy sea level anomaly series warrants further investigation with additional cycles from a sustained deployment in the area. We conclude that the buoy array offers a useful geodetic tool to help quantify and understand intra-swath variability in the context of the SWOT mission.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference39 articles.

1. Long baseline GPS RTK performance in a marine environment using NWP ray-tracing technique under varying tropospheric conditions;Ahn,2005

2. On the resonance and influence of the tides in ungava bay and Hudson strait;Arbic;Geophysical Res. Lett.,2007

3. The southward transport of sub-mesoscale lenses of bass strait water in the centre of anti-cyclonic mesoscale eddies;Baird;Geophysical Res. Lett.,2012

4. Operational implementation of the ACCESS numerical weather prediction systems;BoM;NMOC Operations Bull,2010

5. Absolute calibration results from bass strait, Corsica, and harvest facilities;Bonnefond,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3