Depositional evolution in response to long-term marine transgression in the northern South China Sea

Author:

Liu Entao,Luo Wei,Yan Detian,Deng Yong,Chen Si,Zhong Jialin,Jiao Yangshuo

Abstract

Research on the interaction between depositional evolution process and marine transgression is critical to understanding the transform mechanism of sedimentary systems and guiding hydrocarbon exploration. The early Miocene witnessed the most significant sea-level rise since the Cenomanian, which resulted in extensive marine-influenced deposits worldwide. However, the relationship between the process of depositional evolution and long-term marine transgressions (>1 Ma) remains poorly understood. The Pearl River Mouth Basin in the South China Sea offers a comprehensive deposition record of the early Miocene marine transgression. This study employs high-quality 3D seismic, well-logging, and core data to investigate the impact of the early Miocene transgression on the evolutionary dynamics of the sedimentary system. The regional sea level exhibited a prolonged rise of at least 100 m during the deposition period of the Miocene Zhujiang Formation, corresponding to the long-term marine transgressive in the South China Sea. Throughout this marine transgression, depositional systems developed in the study area include tidal flats, fan deltas, meandering river deltas, and shallow marine shelf sand bodies. The marine transgression process resulted in a significant change in depositional system types, which can be divided into seven units from Unit 1 at the bottom to Unit 7 at the top. The predominant deposition environment transitioned from tidal flats in Units 1-3 to meandering river deltas in Units 4-5, and finally to shallow marine shelf systems in Units 6-7. In the early stage (Units 1-3), the regional uplifts hindered sea level transgression and caused erosion, leading to the development of small-scale proximal fan deltas. In the middle stage (Units 4-5), these regional uplifts submerged, and meandering river deltas dominated with sediments derived from distant extrabasinal sources. During the late stage (Units 6-7), regional sea levels reached their peak, transforming the entire basin into a shallow marine shelf system. Additionally, this marine transgression significantly influenced the distribution of hydrocarbon resources. Notably, the shallow marine shelf sand bodies in Units 6-7 warrant substantial attention for future exploration. This study outlines the complicated transitional processes within depositional systems during long-term marine transgression events, holding relevance for the global evolution of marginal sea basins.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3