Effects of Internal Climate Variability on Historical Ocean Wave Height Trend Assessment

Author:

Casas-Prat Mercè,Wang Xiaolan L.,Mori Nobuhito,Feng Yang,Chan Rodney,Shimura Tomoya

Abstract

This study assesses the effects of internal climate variability on wave height trend assessment using the d4PDF-WaveHs, the first single model initial-condition large ensemble (100-member) of significant wave height (Hs) simulations for the 1951–2010 period, which was produced using sea level pressure taken from Japan’s d4PDF ensemble of historical climate simulations. Here, the focus is on assessing trends in annual mean and maximum Hs. The result is compared with other model simulations that account for other sources of uncertainty, and with modern wave reanalyses. It is shown that the trend variability arising from internal climate variability is comparable to the variability caused by other factors, such as climate model uncertainty. This study also assesses the likelihood to mis-estimate trends when using only one ensemble member and therefore one possible realization of the climate system. Using single member failed to detect the statistically significant notable positive trend shown in the ensemble in some areas of the Southern Ocean. The North Atlantic Ocean is found to have large internal climate variability, where different ensemble-members can show trends of the opposite signs for the same area. The minimum ensemble size necessary to effectively reduce the risk of mis-assessing Hs trends is estimated to be 10; but this largely depends on the specific wave statistic and the region of interest, with larger ensembles being required to assess extremes. The results also show that wave reanalyses are not suitable for analyzing Hs trends due to temporal inhomogeneities therein, in agreement with recent studies.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference39 articles.

1. Marine Wind and Wave Height Trends at Different Era-Interim Forecast Ranges;Aarnes;J. Climate,2015

2. An Analysis of Transformation (With Discussion);Box;J. R. Stat. Soc.,1964

3. Wind Waves in the Coupled Climate System;Cavaleri;Bullet. Am. Meteorolog. Soc.,2012

4. The ERA-Interim Reanalysis: Configuration and Performance of the Data Assimilation System;Dee;Quaterly. J. R. Meteorolog. Soc.,2011

5. The Sea State CCI Dataset V1: Towards a Sea State Climate Data Record Based on Satellite Observations;Dodet;Earth Syst. Sci. Data,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3