Mitochondrial genome analysis reveals phylogenetic insights and gene rearrangements in Parupeneus (Syngnathiformes: Mullidae)

Author:

Luo Zhisen,Yi Murong,Yang Xiaodong,Wen Hui,Jiang Changping,He Xiongbo,Lin Hung-Du,Yan Yunrong

Abstract

Despite the critical role of mitochondrial genomes (mitogenomes) in species identification and evolutionary studies in the genus Parupeneus, current resources are inadequate, given the species richness. Although previous studies have suggested a complex evolutionary history, the detailed mitogenomic variations and their implications remain largely unexplored. Therefore, we sequenced and assembled the mitogenomes of P. barberinoides, P. barberinus, P. biaculeatus, P. crassilabris, P. cyclostomus, P. heptacanthus, P. multifasciatus, and P. chrysopleuron, to enrich the molecular data and provide novel insights into the genetic diversity, evolutionary dynamics and phylogenetics of the family Mullidae. Our analysis revealed a novel gene rearrangement in P. chrysopleuron, Cytb-T-P-CR-Q-I-F-12S-V-16S-ND1-M-ND2, which differed from the conventional sequence of Cytb-T-P-CR-F-12S-V-16S-ND1-I-Q-M-ND2 observed in other species. In the novel rearrangement, four non-coding regions are inserted between ND1 and M, Q and I, I and ψM (tRNA-Met pseudogene), ψM and F. We assume that two tandem duplication/random loss events occur in the CR and IQM, making the entire sequence longer than that in other Parupeneus species. The phylogenetic results indicated that Mullidae formed a sister group relationship with the family Dactylopteridae, contradicting previous studies that identified a sister group relationship between Mullidae and Callionymoidei. The genera Parupeneus and Mullus formed a sister group, and discrepancies were found in the topological structure of the interspecies relationships within the genus Parupeneus compared with those reported by previous studies. Through combined phylogenetic and mitochondrial structural analysis, we found that phylogenetic topology is closely related to mitochondrial structural abnormalities. This study not only expands the mitogenomic dataset available for Mullidae but also underscores the importance of mitochondrial DNA studies in resolving taxonomic ambiguities and understanding the evolutionary history of marine fishes. Our study contributes to the ongoing research on marine fish taxonomy, mitogenomics, and evolutionary biology by providing new insights into the genetic diversity of marine ecosystems.

Publisher

Frontiers Media SA

Reference73 articles.

1. Sequence and organization of the human mitochondrial genome;Anderson;Nature.,1981

2. Genetic aspects of mitochondrial genome evolution;Bernt;Mol. Phylogenet. Evol.,2013

3. Phylogenetic classification of bony fishes;Betancur;BMC Evol. Biol.,2017

4. Animal mitochondrial genomes;Boore;Nucleic Acids Res.,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3