The effect of monitoring complexity on stakeholder acceptance of CO2 geological storage projects in the US gulf coast region

Author:

Atkinson Lucy,Dankel Dorothy J.,Romanak Katherine D.

Abstract

Environmental monitoring at geologic CO2 storage sites is required by regulations for the purposes of environmental protection and emissions accounting in the case of leakage to surface. However, another very important goal of environmental monitoring is to assure stakeholders that the project is monitored for safety and effectiveness. With current efforts to optimize monitoring for cost-effectiveness, the question remains: will optimization of monitoring approaches degrade stakeholder assurance, or do heavily-instrumented sites communicate higher risk to a stakeholder? We report the results of a stakeholder survey in Gulf Coast states of the US where carbon capture and storage (CCS) is developing quickly. We rely on a 2 by 2 factorial experiment in which we manipulate message complexity (complex v. simple) and social norm (support from scientists v. support from community members). Subjects were randomly assigned to one of four conditions: 1) complex message with scientist support; 2) complex message with community member support; 3) simple message with scientist support; or 4) simple message with community member support. In addition to the experimental stimuli, subjects were also asked about their need for cognition, attitudes toward science and scientists, attitudes about climate change and support for carbon capture and storage (CCS). Our sample is drawn from residents in states bordering the western Gulf of Mexico (Texas, Louisiana, Florida) where CO2 geologic storage is being planned both onshore and offshore. The results offer important implications for public outreach efforts to key stakeholders.

Funder

U.S. Department of Energy

Norges Forskningsråd

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3