Physical Disturbance by Bottom Trawling Suspends Particulate Matter and Alters Biogeochemical Processes on and Near the Seafloor

Author:

Bradshaw Clare,Jakobsson Martin,Brüchert Volker,Bonaglia Stefano,Mörth Carl-Magnus,Muchowski Julia,Stranne Christian,Sköld Mattias

Abstract

Bottom trawling is known to affect benthic faunal communities but its effects on sediment suspension and seabed biogeochemistry are less well described. In addition, few studies have been carried out in the Baltic Sea, despite decades of trawling in this unique brackish environment and the frequent occurrence of trawling in areas where hypoxia and low and variable salinity already act as ecosystem stressors. We measured the physical and biogeochemical impacts of an otter trawl on a muddy Baltic seabed. Multibeam bathymetry revealed a 36 m-wide trawl track, comprising parallel furrows and sediment piles caused by the trawl doors and shallower grooves from the groundgear, that displaced 1,000 m3 (500 t) sediment and suspended 9.5 t sediment per km of track. The trawl doors had less effect than the rest of the gear in terms of total sediment mass but per m2 the doors had 5× the displacement and 2× the suspension effect, due to their greater penetration and hydrodynamic drag. The suspended sediment spread >1 km away over the following 3–4 days, creating a 5–10 m thick layer of turbid bottom water. Turbidity reached 4.3 NTU (7 mgDW L–1), 550 m from the track, 20 h post-trawling. Particulate Al, Ti, Fe, P, and Mn were correlated with the spatio-temporal pattern of suspension. There was a pulse of dissolved N, P, and Mn to a height of 10 m above the seabed within a few hundred meters of the track, 2 h post-trawling. Dissolved methane concentrations were elevated in the water for at least 20 h. Sediment biogeochemistry in the door track was still perturbed after 48 h, with a decreased oxygen penetration depth and nutrient and oxygen fluxes across the sediment-water interface. These results clearly show the physical effects of bottom trawling, both on seabed topography (on the scale of km and years) and on sediment and particle suspension (on the scale of km and days-weeks). Alterations to biogeochemical processes suggest that, where bottom trawling is frequent, sediment biogeochemistry may not have time to recover between disturbance events and elevated turbidity may persist, even outside the trawled area.

Funder

Svenska Forskningsrådet Formas

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference94 articles.

1. A new approach to model oxygen dependent benthic phosphate fluxes in the Baltic Sea.;Almroth-Rosell;J. Mar. Syst.,2015

2. Bottom trawl fishing footprints on the world’s continental shelves.;Amoroso;Proc. Natl. Acad. Sci. U.S.A.,2018

3. Dissolved methane during hypoxic events at the Boknis Eck time series station (Eckernförde Bay, SW Baltic Sea).;Bange;Biogeosciences,2010

4. Sediment transport rates and sediment disturbance due to scallop dredging in Port Phillip Bay.;Black;Mem. Queensl. Mus.,1994

5. Release of nitrogen compounds following resuspension of sediment: model predictions.;Blackburn;J. Mar. Syst.,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3